
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

The PageRank Derby

Karen Devine, Jon Berry and Steve Plimpton
Scalable Algorithms Department

Sandia National Laboratories

CSRI Student Seminar
July 2008

Motivation
• Graph algorithms perform extremely well on

multithreaded architectures like the Cray MTA-2.
– Won IC graph benchmarking contest in 2004.
– Latency tolerance is key.

• But is there a role for distributed memory computers in
informatics?
– More prevalent than MTA in research communities.
– Less expensive than MTA.
– Lots of expertise at Sandia.

• How do these platforms compare in performance?
– This work includes the first apples-to-apples comparison

of platforms on realistic data.

Massive Multithreading:
The Cray MTA and XMT

• Slow clock rate.
– 220Mhz on MTA; 500Mhz on XMT.

• 128 “streams” per processor.
• Latency tolerant: Important for graph algorithms.
• Fine-grain parallelism.
• Simple, serial-like programming model with
global address space.
•Advanced parallelizing compilers.

Cray MTA-2

Distributed Memory:
Clusters and RedStorm

• Fast clock rate (2+ Ghz).
• Local memory and cache.
• Data dependencies satisfied through message passing

(e.g., MPI library).
• Communication more costly than computation.
• Coarse-grain parallelism.
• Parallelization done “manually.”

– Data distribution and load balancing determined by
application.

• Highly successful for wide range
of PDE simulations.

Sandia’s RedStorm

PageRank
• Page, Brin, Motwani, Winograd; 1998
•Basis of Google’s web-page ranking system.
• Floating point computation on unstructured data.
• Premises:

– Important pages link to other important pages.
– Share of importance propagated is inversely

proportional to number of outlinks.

PageRank
• Formulated as a Markov chain:
– States V are web pages.
– Transition primarily according to hyperlinks E.
– PageRank iterates to steady state.

Nonzero
entry Aik

Weighted directed
edge eik

Probability of transition
from state i to state k.

Rows AiVertices VStates V

MatrixGraphMarkov Model

PageRank Example:
Basic Model

• If vi links to vk…
– User equally likely to follow any link on page.
– Probability of moving from vi to vk =

1/out_degree(vi).
3

1 2

6 5

4

Example from Langville & Meyer, 2005.
“A Survey of Eigenvector Methods for

Web Information Retrieval,” SIAM Review.

A =

0 1/2 1/2 0 0 0
0 0 0 0 0 0

1/3 1/3 0 0 1/3 0
0 0 0 0 1/2 1/2
0 0 0 1/2 0 1/2
0 0 0 1 0 0

PageRank Example:
Basic Model

• If vi links to vk…
– User equally likely to follow any link on page.
– Probability of moving from vi to vk =

1/out_degree(vi).
3

1 2

6 5

4

Example from Langville & Meyer, 2005.
“A Survey of Eigenvector Methods for

Web Information Retrieval,” SIAM Review.

A =

0 1/2 1/2 0 0 0
0 0 0 0 0 0

1/3 1/3 0 0 1/3 0
0 0 0 0 1/2 1/2
0 0 0 1/2 0 1/2
0 0 0 1 0 0

PageRank Example:
Special Cases

• If vi has no outlinks…
– User equally likely to jump to any state.
– Probability = 1 / |V|

3

1 2

6 5

4

Example from Langville & Meyer, 2005.
“A Survey of Eigenvector Methods for

Web Information Retrieval,” SIAM Review.

A =

0 1/2 1/2 0 0 0
1/6 1/6 1/6 1/6 1/6 1/6
1/3 1/3 0 0 1/3 0
0 0 0 0 1/2 1/2
0 0 0 1/2 0 1/2
0 0 0 1 0 0

PageRank Example:
Special Cases

•Weighted moves from each page:
– Percentage of moves that follow a link == α.
– Percentage of moves that are jumps to

another page == (1- α).
– Typically, α ∈ [0.8, 0.9]. 3

1 2

6 5

4

Example from Langville & Meyer, 2005.
“A Survey of Eigenvector Methods for

Web Information Retrieval,” SIAM Review.

A =

0 α/2 α/2 0 0 0
1/6 1/6 1/6 1/6 1/6 1/6
α/3 α/3 0 0 α/3 0
0 0 0 0 α/2 α/2
0 0 0 α/2 0 α/2
0 0 0 α 0 0

PageRank Example:
Special Cases

•Weighted moves from each page:
– Percentage of moves that follow a link == α.
– Percentage of moves that are jumps to

another page == (1- α).
– Typically, α ∈ [0.8, 0.9]. 3

1 2

6 5

4

Example from Langville & Meyer, 2005.
“A Survey of Eigenvector Methods for

Web Information Retrieval,” SIAM Review.

A =

β

1/6
α/3+β
β

β

β

α/2+β
1/6

α/3+β
β

β

β

α/2+β
1/6
β

β

β

β

β

1/6
β

β

α/2+β
α+β

β

1/6
α/3+β
α/2+β
β

β

β

1/6
β

α/2+β
α/2+β
β β=(1- α)/|V| =(1- α)/6

PageRank Example:
Special Cases

•Weighted moves from each page:
– Percentage of moves that follow a link == α.
– Percentage of moves that are jumps to

another page == (1- α).
– Typically, α ∈ [0.8, 0.9]. 3

1 2

6 5

4

Example from Langville & Meyer, 2005.
“A Survey of Eigenvector Methods for

Web Information Retrieval,” SIAM Review.

A =

β

1/6
α/3+β
β

β

β

α/2+β
1/6

α/3+β
β

β

β

α/2+β
1/6
β

β

β

β

β

1/6
β

β

α/2+β
α+β

β

1/6
α/3+β
α/2+β
β

β

β

1/6
β

α/2+β
α/2+β
β β=(1- α)/|V| =(1- α)/6

For efficiency:
Keep the Sparsity

A =

β

1/6
α/3+β
β

β

β

α/2+β
1/6

α/3+β
β

β

β

α/2+β
1/6
β

β

β

β

β

1/6
β

β

α/2+β
α+β

β

1/6
α/3+β
α/2+β
β

β

β

1/6
β

α/2+β
α/2+β
β

!

A ="

0 1/2 1/2 0 0 0

0 0 0 0 0 0

1/3 1/3 0 0 1/3 0

0 0 0 0 1/2 1/2

0 0 0 1/2 0 1/2

0 0 0 1 0 0

$

%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(

+"

0

1/6

0

0

0

0

$

%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(

e
T

+)eeT

Link transitions
Jump from v2
(no outlinks)

Jump from
any vi

to any vk

β=(1- α)/|V| =(1- α)/6

• PageRank is then Power Method iteration.
– Propagate importance until converged.
– Initialize PageRank vector x to uniform distribution.
– Do until

•Key computational kernels:
– Matrix-vector multiplication.

• Link transitions
– Loops over vector entries.

• Adjustments for special cases
• Norm and residual computations

Power Method Iteration

!

x
n+1

T
= x

n

T
A

!

x
n+1 " xn < tolerance

MTGL

ADAPTER

PageRank
MultiThreaded Implementation

•MultiThreaded Graph Library (MTGL)
– Berry, Hendrickson, Kahan, Konecny; 2007.
– Enables multithreaded graph algorithms.
– Builds upon community standard (Boost Graph

Library).
– Abstracts data structures and other application

details.
– Hide some shared memory issues.
– Preserves good multithreaded performance.

• Use graph from Markov model.
• Store graph in compressed-row sparse

format.
– Vertex index array points to list of incoming

edges’ source vertices.

• Other representations would work with the
same MTGL PageRank code.

PageRank
MultiThreaded Implementation

3

1 2

6 5

4

1 32 4 5 6
0 31 4 6 8 10

3 31 1 5 6 3 4 54

Vertex:
Index:

IncomingEdgeList:

PageRank
MultiThreaded Implementation

• Algorithm looks like serial code.

• Requirement for scaling:
– Singe thread contains the loop over incoming edges of a

given vertex.
– Enables compiler to generate code without hot spots.

#pragma mta assert nodep
// Loop over all vertices
for (int i=0; i<nVtx; i++) {
 double total=0.0;
 int begin = index[i];
 int end = index[i+1];
 // Loop over edges pointing to vertex i.
 for (int j=begin; j<end; j++) {
 int src = j;
 double r = rank[src];
 double incr = r/(double)degree[src];
 total += incr;
 }
 accumulate_rank[i] = total;
}

PageRank Distributed
Memory Implementation

• Use matrix-representation A.
• Iterate to steady-state:
• For efficiency, don’t store jump transitions in A.
– Matrix-vector multiplication with sparse link

transition matrix.
– Loops over vectors for jump adjustments.!

x
n+1

T
= x

n

T
A

3

1 2

6 5

4

Example from
Langville & Meyer, 2005.

SIAM Review.

!

A ="

0 1/2 1/2 0 0 0

0 0 0 0 0 0

1/3 1/3 0 0 1/3 0

0 0 0 0 1/2 1/2

0 0 0 1/2 0 1/2

0 0 0 1 0 0

$

%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(

+"

0

1/6

0

0

0

0

$

%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(

e
T

+
(1)")

6
ee

T

Link transitions
Jump
from v2

Jump from
any vi

to any vk

Row-based Distribution
• Trilinos solver framework (Heroux et al.)
• Epetra distributed matrix/vector classes.
• Default data distribution:

– Each processor stores an equal number of
rows, distributed linearly.

– Vectors distributed with same map.
• Sparse point-to-point communication

used in matrix-vector product.
– Send only data needed; no zero-values.
– Possibly communicate with all

processors.
• Global communication needed for

computing norms and residuals.

Block-Based Decomposition
• Matrix2D class (Plimpton)
• Logically arrange P processors into array

of size .
• Assign each processor a block of the

matrix.
• Most communication done only along

processor rows or columns.
– Communicating with at most

neighbors.
– Communications include all vector

entries in row or column.
• Global communication needed for

computing norms and residuals.

!

P " P

!

P

Experimental Data: R-MAT
•Recursive Matrix (R-MAT) Model
– (Chakrabarti, Zhan, Faloutsos; 2004).
– Commonly used to represent web and

social networks.
– Power-law degree distributions.
– Generate edges E through

recursive operations in
adjacency matrix A.
• Aik > 0 ⇔ eik ∈ E
• Four parameters determine

edge distribution: a + b + c + d = 1.

a

dc

d
a

dc

ba
dc
b

Figure from Chakrabarti, Zhan, Faloutsos, 2004.
“R-Mat: A Recursive Model for Graph Mining.”

4th SIAM Int. Conf. on Data Mining.

“Nice” R-MAT 14: |V|=16,384 ; |E|=131,072
Max degree: 112

“Nasty” R-MAT 14: |V|=16,384 ; |E|=131,072
Max degree: 1,666

R-MAT Parameters
• “Nice” data parameters:

– a = 0.45 – c = 0.15
– b = 0.15 – d = 0.25

• “Nasty” data parameters:
– a = 0.57 – c = 0.19
– b = 0.19 – d = 0.05

Experiments
• Data: R-MAT 25

– Average degree = 8
– |V| = 225 > 33M; |E| = 228 > 268M.
– “Nice” max degree = 1,108
– “Nasty” max degree = 230,207

• Architectures:
– Distributed Memory:

• Tbird cluster: 3.6GHz Intel EM64T; Infiniband CLOS network
• Redstorm: 2.4GHz Operton; 3D Mesh network

– Multithreaded Architectures:
• Cray MTA: 220 MHz; Modified Caley network
• Cray XMT: 500 MHz; 3D Torus network

Architecture Comparison: RMAT25

Redstorm-Nasty

Redstorm-Nice

Tbird-Nasty
Tbird-Nice

XMT-Nasty

XMT-Nice

MTA-Nasty

MTA-Nice

Distributed Memory
Distribution Comparison

RMAT-25
Tbird Cluster

Load Imbalance
• Number of rows per processor is uniform.
• Number of nonzeros per processor varies greatly.

– Reduces scalability of matrix-vector multiplication.

NICE data NASTY data

Multiconstraint Partitioning
• Ideal distribution would have…
– Uniform number of rows per processor AND
– Uniform number of nonzeros per processor.

• Multiconstraint Partitioning
– (Karypis, Schloegel, Catalyurek)
– Specify vector of weights for each row.

• Weight for row k = [1, # nonzeros in row k]
– Find distribution of rows that is balanced with respect to

both components.

• PaToH Multiconstraint Hypergraph Partitioner
(Catalyurek)

Multiconstraint Partitioning
Results

Row Distribution

Nonzero Distribution

RMAT-23 NASTY
|V| = 8.38M
|E| = 67.1M

Max Vertex Degree: 94,561

PageRank Scalability with
Rebalancing

• Execution time on Tbird.
• PaToH Multiconstraint Partitioning.

RMAT-23 NASTY
|V| = 8.38M
|E| = 67.1M

Max Vertex Degree: 94,561

Conclusions
• Distributed memory clusters can process large

unstructured data sets in some contexts.
– Scalability demonstrated up to 1000 processors.

• Massively multithreaded architectures can outperform
clusters, even with floating-point computation.
– MTA and XMT can do more than chase pointers.

• Less programmer intervention needed on massively
multithreaded architectures than distributed memory
architectures.
– Less effort spent on data layout and load balancing

(but more fussing with compilers).

Future Work
• PageRank Derby

– More architectures (e.g., Netezza database
machine).

– More programming paradigms (e.g., MapReduce).
•Comparing other graph algorithms.

– Determine feasibility on distributed memory
systems.

• Parallel multiconstraint hypergraph
partitioning in Zoltan and Isorropia.

